Contribution ID: 113 Type: Talk

Structure Functions and Tau Neutrino Cross-Section at DUNE Far Detector

Tuesday, 2 August 2022 15:42 (22 minutes)

The high statistics and excellent resolution capabilities of DUNE's 40 Ar detector will allow us to make precise studies about phenomena that have, until now, seemed too complex to measure, like tau neutrinos (ν_{τ}) detection and therefore, provide a completion of the 3-flavor neutrino paradigm. Quasi-elastic scattering (QE), Δ resonance production (RES), and deep inelastic scattering (DIS) processes are known to give dominant contributions in the medium and high neutrino energy to the total cross-section of $\nu_{\tau}(N)$ and $\bar{\nu}_{\tau}(N)$ cross-sections. These cross-sections have large systematic uncertainties compared to the ones for ν_{μ} and ν_{e} . Studies point out that the reason for these difference is due to the model dependence of the $\nu_{\tau}(N)$ cross-sections in treating the nuclear medium effects described by the nucleon structure functions, $F_{1N,...,3N}(x,Q^2)$ for ν_{μ} and ν_e . These nucleon structure functions are used to calculate DIS cross-section by including kinematical corrections, but due to the addition of the τ -lepton mass another two additional nucleon structure functions become non-negligible, $F_{4N}(x,Q^2)$ and $F_{5N}(x,Q^2)$. There is a special interest in the DIS processes originated by charged leptons and (anti)neutrinos on nucleons and nuclear targets as they play an instrumental role in the quark-parton structure of the free nucleons and nucleons when they are bound in a nucleus. This talk will show the semi-theoretical and experimental approach to the estimation of the $\nu_{\tau}(N)$ and $\bar{\nu}_{\tau}(N)$ cross-sections in DUNE for the DIS region. We aim to look over changes in Q2, and the contributions of the additional nucleon structure functions $F_{4N}(x,Q^2)$ and $F_{5N}(x,Q^2)$.

Attendance type

In-person presentation

Primary author: YAEGGY, Barbara (University of Cincinnati)

Presenter: YAEGGY, Barbara (University of Cincinnati)

Session Classification: Joint Session

Track Classification: WG1: Neutrino Oscillation Physics